Multiple solutions for Kirchhoff elliptic equations in Orlicz-Sobolev spaces
نویسنده
چکیده
منابع مشابه
Renormalized Solutions for Strongly Nonlinear Elliptic Problems with Lower Order Terms and Measure Data in Orlicz-Sobolev Spaces
The purpose of this paper is to prove the existence of a renormalized solution of perturbed elliptic problems$ -operatorname{div}Big(a(x,u,nabla u)+Phi(u) Big)+ g(x,u,nabla u) = mumbox{ in }Omega, $ in the framework of Orlicz-Sobolev spaces without any restriction on the $M$ N-function of the Orlicz spaces, where $-operatorname{div}Big(a(x,u,nabla u)Big)$ is a Leray-Lions operator defined f...
متن کاملOn a Φ-Kirchhoff multivalued problem with critical growth in an Orlicz-Sobolev space
This paper is concerned with the multiplicity of nontrivial solutions in an Orlicz-Sobolev space for a nonlocal problem with critical growth, involving N-functions and theory of locally Lispchitz continuous functionals. More precisely, in this paper, we study a result of multiplicity to the following multivalued elliptic problem:
متن کاملMultiple Solutions for Quasilinear Elliptic Neumann Problems in Orlicz-sobolev Spaces
Here, Ω is a bounded domain with sufficiently smooth (e.g. Lipschitz) boundary ∂Ω and ∂/∂ν denotes the (outward) normal derivative on ∂Ω. We assume that the function φ :R→R, defined by φ(s)= α(|s|)s if s = 0 and 0 otherwise, is an increasing homeomorphism from R to R. Let Φ(s)= ∫ s 0 φ(t)dt, s∈R. Then Φ is a Young function. We denote by LΦ the Orlicz space associated withΦ and by ‖ · ‖Φ the usu...
متن کاملThe Solvability of Concave-Convex Quasilinear Elliptic Systems Involving $p$-Laplacian and Critical Sobolev Exponent
In this work, we study the existence of non-trivial multiple solutions for a class of quasilinear elliptic systems equipped with concave-convex nonlinearities and critical growth terms in bounded domains. By using the variational method, especially Nehari manifold and Palais-Smale condition, we prove the existence and multiplicity results of positive solutions.
متن کاملA Priori Estimates for Elliptic Equations in Weighted Sobolev Spaces
In this paper we prove some a priori bounds for the solutions of the Dirichlet problem for elliptic equations with singular coefficients in weighted Sobolev spaces. Mathematics subject classification (2010): 35J25, 35B45, 35R05.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017